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ABSTRACT 

Lower and upper bounds for the maximal number of independent vertices 
in a regular graph are obtained, it is shown that the bounds are best possible. 
Some properties of regular graphs concerning the property .~ defined below 
are investigated. 

Introduction. In this paper we are interested in independent sets in regular 
graphs. In §2 we give bounds for the maximal number of independent vertices 
in a regular graph G. (G will always denote a graph without loops and multiple 
edges). It  is shown that these bounds are best possible. It seems true that each 
value between the bounds is obtainable. In §3 we define the property ~ for 
graphs: we say that a graph G e . ~  if every vertex of G belongs to a maximal 
independent set of vertices in G. In some cases conditions are given under which 
G e . ~ .  In §3 we define a class of graphs called homogeneous for which it seems 

to be interesting to investigate their properties and structure. 

1. Definitions and Notations 
A graph G will be called regular of degree m if every vertex is incident with 

exactly m edges. We shall denote such a graph by G(n, m) where n is the number 
of  vertices in G. It is evident that such a graph exists iff n > m and n ' m -  0 (mod 2). 

a(M) will denote the number of  elements of  the finite set M. 6 will denote the 
complementary graph of G. The components of G are its maximal connected 

subgraphs. 
A set R = {a l ""  ak} ~ S (S the set of vertices of G) will be called a representing 

system of  the edges of  G if every edge of G is incident with at least one vertex from 

R. #(G)will denote the minimal number of  vertices representing the edges of  G. 

/7(G) will denote the maximal number of independent vertices in G. v(G) denotes 

the number of edges in G. 
M ~ S. [M] will denote the subgraph spanned by M. M, N ~ S, a MN-edge 

is an edge whose one endpoint is in M and the other in N. [M, N] will denote the 
subgraph whose vertices are M u N and the MN-edges contained in G. a, b e S, 

(a, b) e G denotes that a and b are incident in G. Cn will denote the complete graph 

with n vertices. 
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[fl]* will denote the smallest integer not less than ft. 

2. THEOREM I. Let (3 = (3(n, m) be a regular graph of degree m with n vertices. 
Denote by Ft(G) the maximal number of independent vertices in G then: 

k + 2  n = k ( m + l ) + m ;  m > 2  - ~  

b) fi(G) >_- 3 (3 = G(2n + 1,2n - m); m < n; > 2n + 1 

, n a .  ot er ase  

These bounds are best possible in the sense that for  each pair of  integers n, m 
such that m < n and n • m -= 0(rood2) they are obtainable. 

Proof. Let S be the set of vertices of G. Let A c S be an independent set of  
vertices in (3 and ~(A) = fi(G). Since A is a maximal independent set of  vertices, 
each vertex of  S - A is neighboring with at least one vertex of  A. The number of 
different edges having one endpoint in A is/~((3) • m hence: 

1) ~ ( G ) ' m > n - ~ ( G ) ~ ( G ) >  [ ~ ] *  = = (/7(G) is an integer !) 

2) v((3) n .m n ' m  [ 2 ]  = =~ T > ~ ( G ) "  m ~ > / ~ ( G ) .  2 

Let a ~ A, The m different edges whose one endpoint is the vertex a have their 
second endpoint in S - A. Therefore 

3) ~(S - A) = n - ~(G) > m ~/7(G) < n - m. 

To show b) we need two Lemmas: 

L~CIMA I. Let G = G ( K ( m + l ) + m ; m ) ,  m > 2 ~ / ~ ( G ) > K + I  

(i.e.~(G)_>_ ~ +1) .  

Proof. (Observe that m must be even otherwise the graph does not exist). To 
prove the lemma we use induction on k. 

For  k = 1: Since G = G(2m + 1, m) ~ G = G(2n + 1, m) and since an in- 
dependent set of k vertices in G form a complete k-subgraph in G it will suffice 

to show that (~ must contain a C 3 . 
Let a ~ S be any vertex in G. a ~ {a~ ... am} = A. If  a is not contained in a C3 

A must be independent. S = {a} ~ A@B. e(B)= m. This implies that each 

at E A is an endpoint of  m - 1 edges whose second endpoint is in B. 



264 M. ROSENFELD [December 

_• m m 
v(G) = m 2 + ~v([B])  = m 2 + -~- - (m + (m - 1)m) = -~-. 

Since by our assumption m > 2 and m is even v( [B])>  2. Let bi--', bk, bi'-"} b[, 
(it is possible that bi = b~ but bk ~ bk) bi is neighboring with some ai ~ A otherwise 
bi @ A would be an independent set with m + 1 vertices which is impossible. 

If  a,-~bk a i - - { B - b k )  ai~b'~ and ai~b'k and [a,b~b'k]=C3. If  a , ~ b k  
then [aibibk] = C3. 

Suppose ko > 1 is the smallest positive integer for which the lemma does not 

hold. Let us denote by Go the graph satisfying 

(1) Go = G(ko(m + l) + mlm) /7(Go) = ko + l. 

G o cannot be connected: if G o is connected by a theorem due to Brooks [1] G o 
is m-chromatic. Hence 

Go = 25 (b At 
i = 1  

where Ai is the set of vertices colored with the i-th color. 

ko(m + 1)+ m 
max~(Ai) > > ko + 1 

m 

Since A i is an independent set of vertices in G o this is a contradiction to our 
assumption (1). Hence Go must have at least two components: 

(2) G O ---- G 1 (~) G 2 . 

Let us consider the two possible cases: 

i) G 1 = G(kl(m + 1) + r I , m) G 2 = G(k2(m -I- I) + r2, m) kl + k 2 = ko, 

r 1 q - r  2 - m  r 2 ,  r 1 ~ 0  

ii) G l = G ( K l ( m + l ) + m , m )  G 2 - - G ( K 2 ( m + l ) , m ) .  

CASE (i): /7(Go) =/7(G1) +/7(G2) > K1 + 1 + k 2 -1- 1 = Ko + 2 which contra- 
dicts the assumption (1) hence this decomposition is impossible. 

CASE (ii): By the induction hypothesis (K 1 < Ko)~(G1) >K1 + 2 

/7(Go) =/7(G1) +/7(G2) > K1 + 2 + K2 = Ko + 2. 

This shows that /7(Go) = K o + 1 is impossible and the proof  of  the lemma is 
completed. 

5m 
LEMMA II. Let G = G(2n + 1 ; m) and suppose that --~ > 2n + 1 then G 

contains a Ca. 
, g .  
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Proof. Suppose that G does not contain a C 3. Let a s ~ (ba, b 2 . . .  bin} = B 

ba -~ ( a l ' "  am} = A. I f  G does not contain a Ca, A and B are independent sets 

of vertices and A n B = 0. Therefore G = A ® B • C where C = (ca ' "  c,} and 

m 
by our assumption r in an odd integer and r < -~.  Let c e C and suppose that c 

has r a < r - 1 neighboring vertices in C. Suppose furthermore that 

c "-~ (aft... a~ bkl"'" bk) j + k = m - r a . 

Without loss of generality we may suppose that j > k. Since B is independent 

bg, has m neighboring vertices in A @ C. Now c has r a neighboring vertices in C; 

then if G does not contain a C a bk~ has at most r - r~ neighboring vertices in C. 

Therefore bk~ has at least m - r =  r~ neighboring vertices in A. A contains m - j  

vertices that are not incident with c. 

rn + r a 
j + k = m - r  a j > k  m - j < =  2 

m m m +  
Since -~ > r, m -  r + r 1 > -~ + r 1 > rx > m - ] ; this means that bk must have 

at least one neighboring vertex from a h ... aij and G o would contain a C3, a contra- 

diction to our assumption. Therefore we conclude: 

i) c~ai~c~{B}. 
ii) c ,c '  e C ,  c ~ c ' ,  c - ~ { A } ~ c ' - ~ { B } .  

t t m 
For if we had c -~ {a,l ... aij  } = A c ~_ A,  and c' -~ (a,, ... a,k } = Ac,, k = m - rl  > -~ ,  

m 
j = m -  r a > ~- A c N A t ,  ~ 0 and Go would contain a C 3 (N l,r~ have the same 

meaning as in the preceding paragraph). Denote by C a = {c a ... c~}_ C and 

C B = (c] ..-c~,}_ C those vertices of C having neighboring vertices in A or B 
respectively. Because of i) and ii) C = CA • C~ and CA and Cs are independent 

sets in Go. 

I f  Go does not contain a Ca we conclude from the above discussion that Go 

contains only four types of  edges: 

(1) CaCB-edges (2) ACa-edges (3) BCB-edges (4) AB-edges. 

Henceforth to complete our proof it will suffice to show that r iB ,  CB] # v iA ,  Ca]. 

(This means that if G O does not contain a C3 it cannot be regular). 

Since r is odd and j + k = r we may suppose tbat k > j .  Le t  r~ = drc~(Ci) 

we have ~=1 rt CaCB-edges in Go, j .  m - Z~=a r, ACA-edges and k. m - ~ = x  r, 

BCs-edges .  Since k > j k " m - ~,r~ = r i B .  CB] > j " m -- ~,~=~ r, = v [ A .  C4] 

Q.E.D. 

Lemmas I and I I  give the justification of the modification of  the lower bound 

for/7 (G) given in (b).To complete the proof we will construct for each given ad- 

missible m, n a regular graph in which we obtain the bounds. 
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(a) G(2n, m) m <__ n f i(G)= n. 

A =  { a , . . . a . )  B =  {b , . . .b , }  

ai "-* ( bi, bi4 t"" bi; , .  } 

M. ROSENFELD [December 

I i + m  i + m < n  
i - i - m =  = 

i + m - n  i + m > n .  

It is easily seen that this construction gives a regular bipartite graph with/~(G) = n. 
Observe that this graph does not contain a C 3 hence the complementary graph 

is a G(2n, m')  m' > n and fi(G) = 2. 

(b) G(2n + 1,m) (m<_ n) /7(G)=n. 
Observe that in this case m must be even m = 2k. To the graph constructed in (a) 
adjoin an additional vertex c. Omit the edges (a~b3 1 <- i <- k and add the edges 
(ca3 and (cb3. The resulting graph is easily seen to be a G(2n + 1, m)wi th  fi(G) = n. 
Observe that if k > 2 G will contain a C3 but not a C,. 

n 
(c) G(n;m) m >  --~ p ( G ) = n - m .  

Let G* = C,_, ,  @ G(m ; n - m - 1). 
r l  . 

G(m; n - m - 1) always exists: for m > ~-  implies that m > n - m - 1, if m 
is odd n must be even and therefore n - m - 3is even. Furthermore it is easily 
seen that G* contains a C,_,, but not a C.-m+t .  The graph G* = G(n, rn) is the 
desired example. (a) (b) and (c) show that the upper bound stated in (a) is best 

possible for each admissible m, n. 

(d) G ( k ( m + l ) + m ; m )  f i ( G ) = k + 2  m ~ 4  (See Lemma I). 

For  k = l  the graph G o ( 2 m + l , m ) = G ( 2 m + l , m )  where G ( 2 m + l , m )  
is the graph constructed in (b) has (Go) = 3. For  k > 1 the graph G = C,, ÷ 1 

@ "'" @ Cm÷x @ Go( 2m + 1,m) will have 

fi(G) = k + 2. 

(e) G(2n + l ; m )  m = 2 r  o > n  2 n + 1 >  5 ( 2 n - m )  
- 2 ? , ( c )  = 2 .  

The condition 2n + 1 >_5(2n - m) . 2 Is necessary because of Lemma II. 

Denote the set of vertices by: 

A ~- { a l , . " a n }  B~-- {bt ," .b . }  and c. 

Edges: c -* (a,  "" a,, bt "'" b,} m' -- 2rm' = 2n - m 

a i ~ { b , + t . . . b , }  b ~ { a , + l . . . a , )  l < i < r .  

By our a s s u m p t i o n m ' > n - r ~ n - r + l = m ' - k  k_~0. 
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a,+,~(aj}; b,+,-~(bj} l < j < r  l <i<_k. 

This is possible since n - r > k as will be shown in the sequel. It is easily seen that: 
2r = m' l < _ i < r + k  

d(ai) = d(bi) = d(c) = 2r = m'. 
r r+k+l<_ i<_n  

Now n - r - k = n - r - [ m ' - ( n - r + l ) ] = 2 n + l - 2 m ' > r  by our as- 
sumption (which proves that n - r > k) hence we can construct from the two sets: 

a '  = {at+k+ 1 , ' " ,  an} and B' = {br+k+ 1 ,""  bn} a bipartite regular graph of degree 
r with A', B' independent. It is easy to see that the graph thus defined is a 
G(2n + 1, m') that does not contain a C a . The complementary graph of thisgraph 

is the example looked for. 

[ n  1" 5 m ' < n ( i f n i s o d d ) "  (f) G(n,m) ~(G)=  ~ n # k(m + l) + m ~ _  

L e t n = h ( m + l ) + r  O < r < m .  
I f  r = 0 take G = Cm+1 @ "'" @Cm+ l (h times). 

5r 
I f  r > 0 but m + 1 + r is even or m + r + 1 > -~- take in the first case 

G = Cm+l @ ""Cm+l@Ga and in the second case: 

G= Cm+l@"" @Ge 

Where Ga- -G(m + r + 1, m) is the graph constructed in (a) (/7(Ga)= 2 ) a n d  
Ge = G(m + r + 1, m) is the graph constructed in (e) .  One easily verifies the 

[ - ~ + 1  ]* 5r equality ~ (G)=  . I f  m + r + l  is odd but m +  r + l < - ~ - , m m u s t  
be even. 

Let 2m + r + 2 = 3 k  +Jo  0 <Jo  < 2 ( 2 m + r  + 2 is even!). I f j o  = 0 k is even. 
Let C i {c~ i . . . .  Ck} 1 <-- i < 3 be a set of vertices. Join by an edge the following 
vertices: 

c¢ 2 -4, {Ck-l+j(mod(k/2))} } C 2 "-4" (C~q-,} 

( k) k { l + j i f l + j < k  
l < i < k ; o < j < m - k  <.~ ; ~ +  l < l < k ; l q - j =  l + s - l i f l + j = k + s . s > O .  

Each C t is a complete k-graph. These relations define a graph G* = G(3k, m)with 
~(G*) = 3. The graph G = Cm+l @ "'" @ G* (Cm+~ taken h - 2 times) is a G(n,m) 

= . I f  io ¢ 0 then: 

2(k + (k + 1) k + 1 is even 

2 m + 2 + r =  2 ( k + l ) + k  k i s e v e n .  

In the first case take three complete graphs: C 1 = C 2 = Ck; C 3 = C~+~. In the 
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second case we take C 1 = C 2 = Ck+~ ; C 3 = C~,. Add to the graph C ~ @ C 2 @ C 3 
the following edges: 

c 3 I 3 ~ 2 1 2 

k + l  k + l  
1 < i < - -  O < = j < m - k - 1  - - - - - < s < k .  

- - 2 = 2 = 

It is easily seen that these relations define a graph G * =  G(3k + 1, m) with 

#(G*) = 3. A similar construction can be carried out in the second case. In both 
cases the graph looked for is G = Cm+ 1 @""  @ G*. 

5m 
(g) G(2n + l,2n-m) m < n --f-- > 2n + l. #(G)=3 

It is trivially seen that the complementary graph of the graph constructed in (b) is 
the desired example. This completes the proof  of the theorem. 

REMARKS. Since the complement of a maximal independent set of  vertices 
in a graph is a minimal representing system and vice versa, our theorem can be 

applied to the estimation of  #(G) in regular graphs. P. Erd6s and T.  Gallai [2] 
have shown that:  

2v(G) rc (G) _ n 
n - /7 (G)  =/~(G) < 2v(G) + rc(G~ p(G)< m + 1 

which is the same bound obtained in (b). But in the case of regular graphs as was 
shown we can say more than in the general case. In [2"] it is shown that the 
equality 

n 

/7(G) = m + 1 

holds if and only if G is the direct sum of complete graphs. In the case of regular 
graphs the equality 

n * 

which can be obtained except for the two cases mentioned in (b) does not determine 
uniquely the graph in general. Furthermore, we can give a lower bound for/~(G): 
(only for regular graphs) 

/~(G)>max ~ , m  . 

and the minimal value is obtainable for each n, m such that n • m - 0 (rood 2). 

2) Given a regular graph we can easily estimate e(G). 

8(G) 
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where I(G) is the interchange graph of G and if G = G(n, m) 

I(G) = G(½ n " m, 2(m -- 1)) then 
hence: 

269 

Into /[4J 1,/ 2~-m" -- 2 = e(G) = min ' z n" m - 2(m - . 

One can easily modify these bounds using the fact that each vertex in I(G) is 

contained in a C m . 
Lemma I is a sharpening of a theorem of Turfin [4], for the case of C3. 

Observe that it holds only for regular graphs having an odd number of vertices. 
One can easily deduce from theorem I, that if n / n -  m > r, G(n, m) must contain 

a C,+ x. (This result can be obtained from Tur~m's theorem). A slight modification 
of this result can be obtained from lemma II: 

If  G = G(u(m + 1) + m,(u - 1)(m + 1) + m) 

then G contains a C,,+2. 

3. DEFINITION A graph G will have the property ~¢'(G e oW) if every vertex in G 

is contained in a maximal independent set of vertices with p(G) vertices. 

In this section we shall investigate the property ~ in some extremal cases of 
regular graphs. For  this we need few more definitions: 

1) With each vertex of G(n, m) we associate a (m/2)-tuple of  integers ordered 
by increasing magnitude and defined as follows: with each two edges incident 
with the vertex in consideration associate the length of  the shortest circuit con- 
taining them. If  such a circuit does not exist the number associated will be + oo. 
We denote by z(a) the (m/2)-tuple associated with the vertex a, and call it the type 
of a. It is obvious that a necessary condition that there exists an automorphism 
of  the graph that carries a to b is z(a) = z(b). 

2) A regular graph will be called homogeneous if all the vertices in each com- 
ponent have the same type. Examples of homogenous graphs are circuits, complete 
graphs and point symmetric regular graphs. A homogenous graph need not be 
point symmetric, see for example the graph constructed by B. Griinbaum in [3] 

L E n A  3.1. G i s a g r a p h .  d ( a ) < m  V a e G ~ F t ( G ) >  

Proof. We use induction on n. (~(G) = n). For  "smal l"  n' s the lemma is 

obvious. Let a e G. a ~ {bl' ." bm, }m' < m. e(S - {a b l ' "  bin,}) = n -  (m' + 1). 
The graph G' = I S -  {abl  ."  bm,}] satisfies the conditions of the lemma hence 

m+--1 ->- - 1  therefore a maximal independent 

set from G' together with a is an independent set A with e(A) > 

=[ THEOREM 3.1. G = G(n • m). Ft(G) [ m +  1 J , G e  ~,'g'. 
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Proof. The proof is a direct consequence of lemma 3.1. since we have shown 
that any arbitrary chosen vertex belongs to a maximal independent set. 

n 
THEOREM 3.2. G =  G(n,m) ~ (G)=  ~ = ~ G e ; , ~  and G is uniquely deter- 

mined, m + 1 

Proof. P. Tur{m in [4] proved that in this case G is the direct sum of complete 
m + 1-graphs, hence the theorem follows.We give here another proof of the theorem. 

n 
We use induction on k = For k = 1 the theorem is obvious since in this 

m + l "  
n 

c a s e  G=Gm+ 1. Let G=G(n ,m)  and ~(G)= m +  1 = k >  1 be given. If  G is 

connected by a theorem of Brooks ['1], G would be m-chromatic, G = ~ =  t (3 At, 
At is the set of vertices colored " i " .  

n n 
max ct(ai) ~_ - -  > 

m m + l  
n 

But Al is independent, in contradiction to the assumption ~(G) = m  +-------T'" 

G = G t 0) G2 where Gt = G(nlm), G2 = G(n2, m). 

Hence 

n t + n2 = n and /~(G) = g(Gt) + g(G2). 

n2 Suppose na is not an integer =~ is not an integer by Theorem I: 
m + l  m + l  

= - - - : - - : , .  + > + 1 > ~  
= m + l  r e + l "  

Hence: n~ - k~ < k n2 m + 1 m + i = k2 < k and by the induction Hypothesis 

they are the direct sum of complete m + 1-graphs. This means that G is point 
symmetric :~ G e ~¢t ~. 

THEOREM 3.3. Let G = G(n,m); m > ½n; p(G) = n - m then: 
1) G e ~ if and only i f  n -  m/n and G is homogeneous. In this case G is 

uniquely determined and point symmetric. 
2) G ¢ ~ '  i f  b does not belong to a maximal independent set of vertices while 

a does then z(b) < z(a). (The types are ordered lexiocographically). 

Proof. 1) Suppose G e ~ .  Let A 1 = (as,..., an-m} be a maximal independent 
set .  H e n c e  a ,  ~ {S - & } .  1 _< i -< n - m.  Therefore if A2 = {a~.-. a,'-m} is a 
maximal independent set different from AI we must have As N A2 = ¢. Now if 
G e ~ each g e G belongs to a uniquely determined maximal independent set of  
vertices, hence G is the direct sum of independent sets of vertices and each vertex is 
connected by an edge to all the vertices not belonging to the independent set 
including it. This means that n - m/n. Since the complementary graph of A is 
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easily seen to be the direct sum of complete n - m graphs, G is point symmetric 

and therefore homogeneous. I t  is then obvious that if n - mXn :~ G 6 ~ .  
2) Let a eA ,  A a maximal independent set =>a ~ {S - A). Let B be the set of  

all vertices that are not joined by edge to b (including b) :~ct(B) = n - m. Since 

each a e A is joined by an edge to S - A and b e S - A. B ~ A = O. 

Hence: G = C (3 A ~ B. 

Denote by l(xay) the length of the shortest circuit containg the edges (ax) and 

(ay) (in the sequel it will be shown that l(xay) is finite). Let us calculate z(a) and 

,(b). 
Put {cl ... cs} = C s = 2m - n. 

cic j e C and (cicj) e G l(ciacj) = l(cibcj) = 3 

(c~cj) ~ G l(ciacj) = l(cibcj) = 4. 

l(a~bc~) = 3 this contributes ( n -  m)(2m - n) times " 3 "  to z(b). 

l(a~baj) = 4 this contributes ½(n - m)(n - m - 1) times " 4 "  to z(b). 

Sin ce b does not belong to a maximal independent set: 

v[B] = r >= 1 

Suppose therefore (b~bj) e G :~ 3 c', c" e C ^ (bid), (bjc") ¢ G. :~ l(biabj) = 3, 
l(b~ac') = 4, l(bjac") = 4. 

Since riB] = r it is easily seen that we have 2r triangles of  type l(abc) more 
than of type l(cab)while only r triangles of  type l(bab)more than of type l(aba); 
this shows that in z(b) we have r " 3 "  more than in z(a) ~z (b )  < ~(a). This proves 

also that if G is homogenous we must have n - m/n and G e ~ .  This completes 
the proof  of  the theorem. 

THEOREM 3.4. G = G(n, m) /7(G) = 3. I f  a does not belong to a maximal in- 
dependent set of  vertices in G while b does then z(a) < z(b). 

Proof. Observe first that if m < 2 '  G e .~ ,  hence we will suppose that m > n 
= 2 "  

Let a ~ { x l " " X m }  =X, , ,  a -~ , {y l . . . y ,_m_l}= Y,,. 
1) G =  { a } ~ X . @  Y. 
2) a does not belong to a maximal independent set implies Y. = C._ m_ i .  
3) The number of  different triangles containing a is v[X.].  

v[X ' ]=n 'm2  { m +  (n-m-1)(n-m-2)2 t - ( n - m - 1 ) ( 2 m - n + l ) } "  

Let b ~ { r l . . . r m }  = R b b + ~ { p t . . . p . _ m _ l } =  Pb. 

G = {b} ~ R b G P  b. 

Since b belongs to a maximal independent set Pb # Cn-m-t  the number of  
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different triangles containing b is v[Rb].  It  will therefore suffice to show that 

V[Rb] < v[Xa]. Suppose that in [Pb] r edges are needed to complete the graph 
[Pb], the two endpoints of  such an edge are connected by an edge to vertices in 

Rb. Hence for each "missing" edge in Pb we have two "addit ional"  PR-edges: 

V[Rb] _ n -- m { (n -- m - - 1 ) ( n - -  m - -  2) } 
2 mq- 2 r + ( n - - m - - 1 ) ( 2 m - - n + l ) + 2 r  

Since r > 1 =~ v[Rb] < v[Xo]. This completes the proof. 

REMARKS. 1) G = G(n, m) f~(G) = 3 G is homogeneous =~ G ~ • .  
2) In the general case we do not know when G E ~¢~; it is obvious that:  

G e J f  ¢> c3 Ro = ~ (R~ runs over all the minimal 

representing systems in G) 

but this is not a useful criterion. 
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